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Abstract

Within the framework of the Natural Environment Research Council (NERC) Oxidant
and Particle Photochemical Processes (OP3) project, a pulsed Doppler lidar was de-
ployed for a 3 month period in the tropical rain forest of Borneo to remotely monitor
vertical and horizontal transport, aerosol distributions and clouds in the lower levels of5

the atmosphere. These data are presented with a view to elucidating the scales and
structures of the transport processes, which effect the chemical and particulate con-
centrations in and above the forest canopy, for applications in the parameterisation of
climate models. Analysis of the clear-air vertical velocity data set is shown to enable
direct characterisation of the diurnal variations in the boundary layer mixing processes.10

1 Introduction

The transport of aerosols and chemical species from the surface, through the boundary
layer and in to the free troposphere is governed by the dynamics within the lower levels
of the atmosphere (Warneke et al., 2001; Eerdekens et al., 2008; Ganzeveld et al.,
2008; Fisch et al., 2004; Vila-Guerau de Arellano et al., 2009). These dynamics have15

as their driving force the incoming solar radiation. Their development and evolution
are dictated by numerous factors including the surface energy balance, the vertical
gradients of potential temperature and humidity and the ambient atmospheric flow.
The surface and canopy of the tropical rain forest act as important sources and sinks
of chemical species (Lelieveld et al., 2008). The distributions, dilutions, circulations20

and reactions of these species within the lower levels of the atmosphere are strongly
influenced by these transport processes and their diurnal cycles.

The Oxidant and Particle Photochemical Processes (OP3) project is a UK university
consortium programme aimed at studying these chemical and aerosol processes in
and above the south east Asian tropical rainforest of north east Borneo (Hewitt et al.,25

2010; Pike et al., 2009; Pugh et al., 2010). A comprehensive array of point sampling
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instrumentation was deployed in and above the forest canopy during the period April–
July 2008, with support from over-flights of the UK’s instrumented Facility for Airborne
Atmospheric Measurement (FAAM) research aircraft. In order to provide a continu-
ous view of the dynamics of the boundary layer, a pulsed Doppler lidar was deployed
and operated on a continuous basis for the duration of the experiment. This paper5

presents an analysis of the data from this instrument with a view to visualising and
parameterising the dynamics and structures in the tropical boundary layer and their
diurnal variability. The analysis reported here presents results pertaining to the vertical
velocity, aerosol distributions and the statistics of the cloud coverage.

2 The tropical boundary layer10

The Food and Agriculture Organisation of the United Nations published an assessment
of the Global Forest Resource in 2005 (www.fao.org). 30% of the global land area was
reported to be forest. 36% of this was primary forest that had not been affected by
human activity. However, 6 million hectares of this is being lost or modified each year.
It is estimated that 283 Gigatonnes of carbon is currently retained in the forest biomass15

alone and that together with all the carbon in the soil, deadwood etc. this constitutes
about 50% more carbon than that in the atmosphere. Understanding current and future
influences of the forests on the atmosphere and climate is therefore important in order
to enable more accurate global climate models and assessments of the future trends
in the global climate.20

Garrett (1982) presented an atmospheric model structured in such a way as to en-
able the convective boundary layer and convective cloud formation over a forested
surface to be studied. It was stressed that the soil moisture content, the canopy den-
sity and the surface roughness were likely to influence the daily growth and decay of
the boundary layer and the formation of convective clouds. Martin et al. (1988) used25

a tethered balloon, rawinsondes and an instrumented aircraft to study the Amazonian
boundary layer. Their observations indicated a growth rate of the mixed layer height
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(MLH) in the early morning in the range 180–288 m h−1 and a maximum height of
1200 m at 13:00 Local Time (LT). They also reported residual layers persisting in the
day and nightime that were not associated with any active vertical transport. Culf et
al. (1997) highlighted the fact that a correctly parameterised boundary layer was impor-
tant in their analysis of the CO2 concentrations over the Amazonian rain forest. They5

used radiosondes and tethered balloons together with a gradient of potential temper-
ature approach to diagnose the MLH. The rate of increase in the MLH was found to
be approximately 175 m h−1 between 10:00 LT and 14:00 LT. The average maximum in
the MLH was 1300 m (±300 m, ±1 σ) and occurred at 17:00 LT. The important issue of
characterising the nocturnal boundary layer was also addressed and it was suggested10

that the relative humidity profile, rather than the potential temperature profile, was the
more appropriate parameterisation tool. This analysis indicated a nocturnal boundary
layer height of the order 30 m at 20:00 LT, rising through the night to approximately
150 m at 08:00 LT. Therefore, there was an inferred collapse rate of the MLH between
17:00 LT and 20:00 LT of >400 m h−1. These results are summarised in Fig. 1. Param-15

eterisation of the boundary layer and the characteristics of the mixed layer height over
a higher latitude forest environment has been analysed by Joffre et al. (2001).

Fisch et al. (2004) and Fisch and dos Santos (2008) have studied the influences of
season and land usage on the Amazonian boundary layer. Radiosonde data and a
potential temperature gradient analysis were again employed together with sodar data.20

Figure 1 also shows these data. The approximate rates of increase in the mean MLH
in the time intervals 08:00–11:00 LT, 11:00–14:00 LT and 14:00–17:00 LT were 64, 210
and 64 m h−1 in the dry season and 122, 107 and 63 m h−1 in the wet season respec-
tively. The sodar data was shown to be influenced by residual layers. Vila-Guerau
de Arellano et al. (2009) have studied the isoprene fluxes in the tropical rainforest en-25

vironment and emphasise the importance of correctly parameterising the MLH. One
of their concluding remarks was that continuous monitoring of the MLH using a wind
profiler or lidar was recommended in order to minimise the uncertainties related to the
development of the MLH and estimating the surface emission fluxes.
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Ganzeveld et al. (2008) analysed nitrogen oxides, ozone and VOCs in the tropical
boundary layer. They highlighted the issue that climate models had previously esti-
mated too shallow a boundary layer over tropical forests primarily due to a misrepre-
sentation of the surface energy balance. Their simulations suggested an increase in
the MLH of 300 m (up to a typical maximum of 1400 m) if the soil moisture stress func-5

tion was adjusted to a more representative value. It was also noted that when shallow
cumulus clouds formed at altitudes of 1–3 km, the potential temperature gradient did
not always indicate an explicit inversion height leading to an uncertainty in the effective
MLH as derived from radiosondes. The results published for the MLH in the context of
the simulated HCHO mixing ratio, show the diurnal variation portrayed in Fig. 1 with a10

nightime MLH of the order 100 m and an increase up to approximately 1100 m at local
noon. The rate of increase of the MLH between 10:00 LT and 12:00 LT was approx-
imately 225 m h−1 and the collapse rate to the nocturnal state between 18:00 LT and
19:30 LT was approximately 500 m h−1.

Krejci et al. (2004) used radiosondes to study the Amazonian boundary layer in the15

context of aerosol distributions. Their analysis of the MLH was based upon relatively
sparse sampling but they observed heights of 800 m at 09:00 LT, increasing to 1170 m
at 11:00 LT. The maximum rate of increase they observed was 360 m h−1 but a value of
half this was stated as being more typical. The MLH at local noon was determined to
be in the region 1200–1500 m. In terms of their detailed aerosol results, it is interesting20

to note that they reported a periodic strong gradient in the N120 (number density of par-
ticles >0.12 µm) particle fraction around 400 m, with the values below this level being
5–10 times higher than those aloft. In general their results show complicated and vari-
able vertical profiles of the accumulation mode aerosol indicating that this alone would
be an ambiguous tracer of mixed layer height. Amazonian aerosols distributions were25

also studied by Elbert et al. (2007). They showed that fungal wet spore discharging
was a major source of coarse air particulate matter (characteristic size range 1–10 µm)
and that in pristine tropical rainforest air, fungal spores may account for up to 40% of
the aerosol in this mode. A diurnal variability was also identified with a 20% increase
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in the night. With a strong diurnal variation in the aerosol number density, care must
be taken in interpreting backscatter profiles in the context of the dynamic processes in
the near surface region.

3 Lidar observations of the boundary layer

Active optical remote sensing with pulsed lidar instrumentation offers a unique view on5

the atmosphere. Systems are available that rely on molecular, atomic or particulate
scattering and numerous modes of operation with multiple data products are possible
(Weitkamp, 2005). Remote sensing of the MLH with ground based lidar instrumenta-
tion has concentrated on the use of characteristic features in the vertical distribution
of aerosols (Flamant et al. 1997; Menut et al., 1999; Dupont et al., 1999; Davis et10

al., 2000; Matthias and Bosenberg, 2002; Hennemuth and Lammertt, 2006; Haij et
al., 2007). Marsik et al. (1995) presented an inter-comparison of rawinsondes, a wind
profiler (with Radio Acoustic Sounding System, RASS, for temperature profiling) and
two lidars for determination of the MLH. Considerable variability was found between
the various approaches. It was noted that the lidar backscatter data and analysis con-15

sistently produced the lowest estimation of MLH. This was attributed to the fact that the
aerosols that were acting as the tracer were not mixed up to the point where the rawin-
sondes were indicating the threshold potential temperature gradient. It was suggested
that the lidars were giving an effective mixing depth but it was also emphasised that
the lidar approach could give erroneous results due to residual layers and clouds.20

Grimsdell and Angevine (1998) reported results comparing radar wind profiler, ra-
diosonde and ceilometer data in the context of determining the MLH and Steyn et
al. (1999) extended the (sometimes subjective) prior approaches of a critical gradient or
critical absolute backscatter to include a model of the entire aerosol backscatter profile.
This was shown to be a more robust technique that was better able to accommodate25

layering and variable gradients in the aerosol distribution. Cohn and Angevine (2000)
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used a combination of two lidars (one of which was a pulsed Doppler instrument) and a
radar wind profiler to study the MLH and the entrainment zone. While the lidar Doppler
data was shown, it was not specifically used in the analysis. The wavelet approach
utilised in their analysis was shown to be problematic when clouds and residual layers
were present and, to avoid ambiguities, they excluded data outside the time interval5

10:00–17:00 LT. Another issue that was alluded to, that is particularly relevant to trop-
ical environments, was the interaction of the aerosol and humidity profiles due to the
possible hydrophilic nature of the aerosol.

Davies et al. (2007) reported inter-comparions of pulsed Doppler lidar data with ra-
diosondes and the outputs of several simulations. Again, although the lidar instrument10

was Dopplerised, this data was not employed in the estimation of MLH. A subjective
gradient of the backscatter profile approach was utilised. An important point was made
here with respect to the MLH and the Lifting Condensation Level (LCL), as parame-
terised in the Met Office Unified Model (UM). In the parameterisation scheme of the
UM, for the case of cumulus capped boundary layers, the MLH is set at the LCL.15

The influence of humidity on the vertical aerosol backscatter distribution was further
studied within the context of convection and depolarisation by Gibert et al. (2007).
Relative Humidity (RH) was shown to be an important factor that influences the lidar
signal since it modifies the size, shape, absorption and scattering of the aerosols. In
addition, the possible hysteresis of particle size growth in a variable relative humidity20

field may further complicate any interpretations with respect to mixing processes.
Accordingly, they emphasise that aerosol backscatter coefficient alone cannot be

directly interpreted as being a tracer for the MLH. These issues of humidity and MLH
versus LCL are of particular relevance in tropical environments.

Recent field campaigns with pulsed Doppler lidar instruments have begun to show25

the potential of this technology for real-time observations of the boundary layer
(Frehlich et al., 2006; Pearson et al., 2009; Hogan et al., 2009; Tucker et al., 2009). In
particular, the ability of these instruments to be operated autonomously for observing
the vertical motion in the lower level of the atmosphere offers the ability to visualize
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the vertical transport directly, without the need to infer the dynamics from secondary
measurements such as aerosol distributions or potential temperature gradients.

4 Description of instrument and deployment

The lidar deployed to Borneo was a pulsed Doppler instrument that had previously
been used for studying the boundary layer in mid-latitude, European environments5

(Pearson et al., 2009). It is a commercial device manufactured by Halo Photonics Ltd.
The system relies on backscatter from aerosols and provides range gated Doppler
and return power measurements. From these primary data products, wind profiles,
turbulence parameters, backscatter coefficients and cloud base measurements can be
derived. The spatial and temporal resolutions are variable but were fixed at values of10

30 m and 2 s respectively for this deployment. The Doppler measurement precision is
typically of the order 10 cm s−1 or less in the boundary layer (Pearson et al., 2009).
The instrument was equipped with an all-sky scanner and was housed in a stand-
alone enclosure. Full remote control including configuring the scan schedule, the data
acquisition parameters and data off-load was achieved over the internet.15

The instrument was located at the Nursery site (117.859◦ E, 4.977◦ N, El: 198 m)
in the Danum valley region of Sabah, Borneo. The lidar site was in a valley, approx-
imately 225 m below the base of the 100 m high Global Atmospheric Watch (GAW)
tower (117.844◦ E, 4.981◦ N, El: 426 m) which was heavily instrumented with chemical
and particulate sampling equipment for the duration of the experiment. The topogra-20

phy of the 44 000 ha Danum valley region is hilly and consists of an undulating ground
surface, with a relatively uniform virgin rain forest canopy, dissected by the Segama
river and its tributaries. The highest point is Mount Danum (1093 m). The valleys are
approximately 200 m deep. Figure 2 shows a cross-section of the local topography
around the lidar site.25
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The scanner was configured to take wind profiles every 0.5 h and to stare vertically
for the intervening periods. Each ray used in the wind profile consisted of the average
of the distributed return signal from 60 000 consecutive laser pulses. The lidar oper-
ated at a pulse rate of 20 kHz and therefore this was achieved using a 3 s stare time.
The total time (including signal processing) taken to produce each wind profile was5

approximately 4 min 50 s. For the vertical data, 40 000 pulses were averaged per ray
and the update rate was approximately once every 13.5 s. There were therefore of the
order 114 rays per vertical stare file. For both the stare and wind profile data, 200, 30 m
range gates were recorded.

The data collection period spanned 3 April to 20 June 2008. The weather in the Bor-10

neo region is relatively constant throughout the year. Average monthly temperatures
are 25–26 ◦C and there are typically 4–6 h of sunshine per day. At night the valleys
regularly experience low cloud that dissipates with the onset of significant insolation in
the morning. The wet season is between November and February when the average
monthly rainfall approximately doubles from 250 mm to 500 mm. This region is locally15

referred to as the “Land below the Wind” because it is located below the typhoon belt.
However, the name is doubly appropriate since the near surface winds are typically
low.

5 Results and discussion

Apart from some intermissions due to power outages, a continuous data set was ob-20

tained between 3 April and 19 June encompassing the OP3-I and OP3-II observation
periods. A total of 1656 h of data were recorded, a testament to the autonomous ca-
pacity of the instrument since it was unttended and operated remotely for this entire
period. The overall aim of the data capture and subsequent analysis was to generate
a statistically valid averaged data set for use in correctly parameterising the tropical25

boundary layer in climate models.
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Figure 3 shows the typical temporal and spatial evolution of convection in the mid-
morning period of the tropical day as observed at the Nursery site on 24 April 2008. The
upper and lower panels show the vertical velocity and aerosol backscatter respectively
versus time and height for a 25 min period commencing at 11:00 LT. Convective up-
drafts can be readily seen in the upper panel and entrained aerosol being transported5

therein is evident in the lower panel. The peak updraft velocity is approximately 2.5–
3 ms−1. Two features of the updrafts illustrated well here are that they do not always
exhibit an enhanced aerosol content and they can be seen to extend to heights well
above the region where the backscatter exhibits a strong negative gradient. The fact
that the aerosol is not always entrained in the updraft is interesting in the context of in-10

ferring the MLH from aerosol backscatter measurements. It has been noted previously
that when different techniques are compared, values derived from lidar backscatter
often show the lowest MLH values which is reasonable if this characteristic is preva-
lent. The reduction in the backscatter at around 400 m is not easily explained since a
number of other measurements are necessary in order to know the humidity field, the15

aerosol particle size distributions and the aerosol type. It is worth recalling the result
of Krejci et al. (2004) where the same height was alluded to in the context of a change
in the characteristics of the accumulation mode aerosol distribution. Figure 4 shows
the typical daily development, extent and cessation of convection activity. The period
of intense convective activity can be seen to exist between 09:00 LT and 15:00 LT.20

The entire data record was analysed with a view to obtaining the statistics of the daily
character of the boundary layer and cloud coverage. In this tropical environment, due
to the consistent nature of the daily weather conditions, it was expected that the daily
cycles of the boundary layer characteristics would show a high level of repeatability.
In order to assess the stationarity of the data sets and consequently an appropriate25

mode of analysis, they were analysed on daily, weekly and monthly timescales and the
results compared. An example of two consecutive weekly averaged data sets is shown
in Fig. 5. Each 25 min vertical stare file was reduced to a single ray by averaging
together the 114 rays per file. This was done twice, once including all data above the
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noise floor (wideband Signal to Noise Ratio (SNR) >−17 dB) and again with an SNR
band set to include the subset of data with SNRs in the range −17 dB to −5 dB. The
first threshold includes all data (cloud and aerosol) and the second threshold was set
so as to detect the return signal predominately from aerosols, excluding clouds. The
return power data was converted to attenuated backscatter values based upon the5

known calibration of the instrument. The vertically pointing Doppler data was analysed
in terms of the standard deviation of the range-gated measurements per 25 minute
period. All the data above the noise floor was included in this analysis. The aerosol
distributions were computed by taking the difference between the “all data” and “cloud
only” averages. It can be seen that there is a high degree of similarity between the10

plots for the two successive weeks shown. This similarity was retained throughout the
whole 10 week data set and stationarity testing indicated that averaging of the whole
record was statistically valid. This would certainly not be the case for similar data sets
over western Europe.

Figure 6 shows a contour plot of the averaged daily backscatter versus height (eval-15

uated for the entire 10 week data collection period) as derived from the subset of data
with SNR values in the range −5 dB to −17 dB. In the lowest 900 m, this sub-set of
data corresponds predominately to returns from aerosols. Above this height, the plot
shows the weak cloud returns from the aerosol – cloud interface at cloud base and
the similarly weak returns from pulses that have undergone significant attenuation by20

virtue of a round trip path within the cloud. The region of relatively high backscatter in-
dicated by the red region shows a growth in height starting at around 07:30 LT, leading
to a plateau region with an upper bound at approximately 400 m altitude. The rate of
increase in the height of this region in the early morning was approximately 200 m h−1.
There is a slight increase in the height of this region at around 18:00 LT and then a25

decay to lower levels over the time period 1800–2400. Above this zone, there is a fall
off with height in the average backscatter level of approximately a factor 6 over the
height range 400–800 m. The lower panel of Fig. 6 shows the relative vertical gradient
in the backscatter through the average day. The black lines indicate the approximate
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positions of the maximum gradient, the feature conventionally used for determination
of the MLH. The region of large negative gradient in the day-time aerosol signal is well
highlighted as is a lower layer which grows through the evening. The transition between
these and the humidity/aerosol interaction gives rise to ambiguities in the interpretation
of these features in the context of mixed layer height.5

Figure 7 shows the averaged daily backscatter versus height (evaluated for the en-
tire 10 week data collection period) as derived from the subset of data with SNR values
>−5 dB. The colour scale in this case indicates the occurrence, as a percentage, where
white corresponds to 1% and black is <1%. These data predominately show returns
from clouds. The void in the plot roughly bounded by the times 10:00 LT and 18:00 LT10

and the heights 75 m and 700 m is nominally cloud free. The low level nocturnal cloud
that consistently forms in the valley is readily seen between 20:00 LT and 08:00 LT. It
can be seen that the frequency of occurrence of the nocturnal low-level cloud is of the
order 60% though the period 02:00–06:00 LT. This observation is consistent with the
visual observations from the GAW tower that indicated the valleys to be regularly in15

cloud in the early morning. In the rest of the parameter space, it can be seen that
the frequency of cloud coverage reaches values of around 10%. The zone of the
plot exhibiting a slightly higher percentage value at a height of around 400 m, starting
at 18:00 LT, corresponds to the analogous feature in the aerosol data of Fig. 6. The
choice of the SNR threshold value used to split the aerosol/cloud returns clearly in-20

fluences how this feature appears in these two figures and again highlights the issue
of unambiguously interpreting the backscatter gradients. It seems reasonable that the
aerosol feature is coupled to a humidity effect and reflects those occasions where the
humidity was approaching that required for large-scale nucleation of cloud droplets.

Figure 8 shows the average diurnal cycle in the standard deviation of the vertical25

velocity versus height. This plot was produced by analysing all the data above the
SNR threshold of −17 dB. The standard deviations were computed for each 25 min
vertical stare data segment and then successive days were averaged. It can be seen
that these data portray a clear picture of the average temporal and spatial pattern of the
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diurnal cycle in the vertical mixing without the ambiguities associated with interpreting
aerosol backscatter levels. The zone comprising the green, yellow and red colours
can be seen to exhibit a degree of correlation with the cloud free zone of Fig. 7 but
shows different behaviour to that reflected in the gradient of the aerosol field. This is
consistent with the model approach of Davies et al. (2007) where the MLH and the LCL5

were matched for cumulus capped boundary layers. For the purposes of comparison,
the 0.3 ms−1 contour is replotted in Fig. 10.

For the duration of the deployment, twice per hour, a wind profile was determined
by conically scanning the beam over 12 individual inclined lines-of-sight. The mean,
maximum and standard deviation of the wind speed versus height, as recorded at local10

noon, for the duration of the deployment, are shown in Fig. 9. Shear can seen in the
region near the ground, which is also below the valley rim. Above this, the average
speed is approximately constant with height at around 3 ms−1. The typical values of
the vertical velocity during active mixing are therefore similar to those of the horizontal
flow, consistent with the phrase the “land below the wind”.15

Figure 10 shows a review of the diurnal MLH variation as characterised by various
analyses of the pulsed Doppler lidar data acquired during the 10 week deployment.
The blue plot shows the profile in the maximum gradient of the backscatter. This metric
is influenced by humidity, residual layers and is un-representative through the night.
The green line represents the level indicated by the cloud base where we have used20

an occurrence of 5% as the threshold. The red and black data are derived from the ver-
tical velocity statistics and are based upon the regions where the vertical velocity was
greater than 0.5 ms−1 2% (black) and 10% (red) of the time respectively. The yellow
points are based upon the 0.3 ms−1 contour of the averaged standard deviation in the
vertical velocity. The two dashed lines show rates of 100 m h−1 and 350 m h−1. All the25

different approaches show a growth rate in the morning close to the 350 m h−1 rate. The
previous published data which best agrees with these observations is that of Ganzeveld
et al. (2008). The other previous data sets appear to show slower growth rates. The
collapse to the nocturnal state shows similar behaviour in the cloud, standard deviation
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and thresholded Doppler data (red plot, 10% of the time vertical velocity >0.5 ms−1).
The nocturnal MLH is not well characterised by the lidar since the minimum range of the
data is 75 m and the valley is predominately cloud bound during this period. However,
the lidar data does indicate that the there is negligible vertical motion in the nocturnal
low cloud region implying that there is little vertical transport at night. This does not5

preclude the possibility of nocturnal valley and drainage flows which may be active in
the region below 75 m.

The fact that the lidar was located in the bottom of one of the many valleys in the
region means that the data and particularly the nocturnal data are only applicable to
this portion of the terrain. It would be expected that the ridges between the valleys10

(i.e. where the GAW tower is located) will be influenced more by the horizontal flow
and will be subject to different nocturnal conditions since they are above the low lying
cloud.

6 Conclusions

Within the frame work of the OP3 experiment, a pulsed Doppler lidar system has been15

deployed to the rain forest of north east Borneo in order to characterise the tropical
boundary layer. The transport of chemical species and particulates from the surface
and canopy layers of the forest into the lower levels of the atmosphere is governed by
the dynamics of boundary layer. The lidar can remotely measure these characteristics
providing a data set which allows the surface based point sampling measurements to20

be further analysed within the wider context of the regional atmosphere.
The range gated backscatter and vertical velocity data from the lidar have been anal-

ysed with a view to compiling a climatology that can be used in interpreting and extrap-
olating the surface and tower based point measurements. Repeatable daily cycles in
the aerosol backscatter, vertical velocity and cloud base profiles have been shown to25

exist thereby justifying the use of averaged parameters in further analyses.
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The vertical gradient of the aerosol backscatter, cloud base, vertical velocity dis-
tributions and the standard deviation of vertical velocity approaches to characterising
the MLH have been compared for the same 70 day long data collection period in the
nominal dry season. The different techniques have been summarised and the results
should enable a refinement of the way in which the tropical boundary layer is param-5

eterised. There are important differences in the rates of increase and decay in the
MLH and in the measured characteristics at nighttime for the different methods of data
analysis. Interpretation of the aerosol backscatter data is shown to be complicated by
the influences of clouds and humidity. The Doppler velocity measurements reported
here are a direct measurement of the mixing process and it is suggested that this is the10

most appropriate methodology to use in analysing the dispersion of canopy sourced
species into the lower atmosphere. It is also proposed that secondary indicators used
for the determination of MLH such as radiosondes, backscatter lidar profiles and wind
profilers will, on occasions, not indicate the actual active mixing height but either the
height to which mixing would occur if the process was initiated or the mixing height that15

was appropriate in the recent past. Sporadic daytime solar occultation by clouds, shad-
owing within valleys, sunrise, sunset and aerosol/humidity interactions are examples of
situations when this issue might be important.

These experimentally determined spatial and temporal characteristics in the aver-
aged diurnal vertical velocity, cloud and aerosol statistics in the tropical boundary layer20

are currently being used to aid interpretation of the OP3 data set and it is envisaged
that these data will find future applications in the parameterisation of global climate
models.
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Fig. 1. A summary of previous experimental and theoretical results for the MLH above the
tropical rain forest. The horizontal axis represents 20 h of time starting at mid-night.
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Fig. 2. A schematic cross section of the terrain around the lidar site from the NW (left|) to the
SE (right). Note the different vertical and horizontal scales and the location of the lidar with
respect to the valley floor and the GAW tower. The location of the instrumented tree used for
the in canopy measurements is also shown.
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Interactive DiscussionFig. 3. An example of a 25 min observation of the vertical velocity (upper panel) and aerosol backscatter coefficient
(lower panel). The start time was 11:05 LT on the 24 April 2008. The colour scales in the upper and lower plots are
ms−1 and log backscatter (m−1 sr−1) respectively. Updrafts are designated positive velocity.
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Fig. 4. An example of the daily vertical velocity field as recorded on 15 April 2008. The colour
scale is ms−1, the horizontal axis is LT and the temporal resolution is 13 s (observation time of
2 s and 11 s of processing time). The vertical axis is height (a.g.l.) in meters.
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Fig. 5. These plots show diurnal cycles, as averaged over a week, for the first 2 weeks of the
deployment. The top row corresponds to week 1, starting 3 April 2008, and the second row to
week 2. The three columns, from the left, are backscatter value (all data with SNR>−17 dB),
backscatter value (data for SNR values between −5 dB and −17 dB) and standard deviation of
the vertical velocity evaluated from all the data with an SNR>−17 dB. The backscatter colour
scale is the same as shown in the lower panel of Fig. 3. The colour scale for the right hand
column is as Fig. 8 but the range is 0.1–1.1 ms−1. For each panel the horizontal axis is 24 h
starting at 08:00 LT. The vertical axis is height and extends from 75–2955 m.
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Fig. 6. Upper panel: Contour plot of the averaged daily backscatter versus height (evaluated for the entire 10 week
data collection period) as derived from the subset of data with SNR values in the range −5dB to −17 dB. The contours
are at 2 dB intervals. The horizontal axis is 24 h starting at 08:00. The colour bar scale is log10 backscatter coefficient
(m−1 sr−1). Lower panel: Same data set re-plotted in terms of the relative gradient of the backscatter versus range.
The black lines indicate the approximate positions of the regions of maximum gradient through the day.
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Fig. 7. The statistics of the cloud coverage for the whole 10 week period as evaluated from the
subset of data with an SNR>−5 dB. The colour bar indicates % of time. White corresponds to
1% and black is <1%.
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Fig. 8. A contour plot of the average standard deviation of the vertical velocity evaluated from
the entire 10 week data collection period. All SNR values >−17 dB are included. The contours
are every 0.1 ms−1.
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Fig. 9. The mean (black circles), maximum (grey circles) and standard deviation (error bars
on the mean plot) of the horizontal wind speed versus height for the period 3 April 2008–
20 June 2008 as recorded daily over the time interval 12:00–12:05.

5048

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/5021/2010/acpd-10-5021-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/5021/2010/acpd-10-5021-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 5021–5049, 2010

Remote sensing of
the tropical rain

forest boundary layer

G. Pearson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 10. A summary of the various modes of data analysis that have been used to paramaterise
the structure of the tropical boundary layer. See discussion section for details.
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